

## Molecular diagnostics in kidney cancer.

A. Lopez-Beltran (Lisbon, Portugal)















| Conclusions                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                |
|                                                                                                                                                                                |
| • We need to distinguish between protein expression and activity.                                                                                                              |
| <ul> <li>Multiple somatic mutations can confer tumor resistance to current targeted therapies<br/>at different levels of a signaling pathway</li> </ul>                        |
| • <b>Sanger</b> sequencing allows the detection of mutations when the percentage of mutated DNA molecules is <b>30%-100%</b> of the total.                                     |
| • <b>Next generation sequencing</b> techniques allows the detection of mutations when the percentage of mutated DNA molecules is as low as <b>1-4%</b> of the total, allowing: |
| -Studying microclonal heterogeneity and dynamics in cancer.<br>i.e microclones showing resistance to therapy                                                                   |
| -Explore the mutational profile of each cancer towards the identification of <b>multiple therapeutical targets</b> simultaneously.                                             |
|                                                                                                                                                                                |
|                                                                                                                                                                                |
|                                                                                                                                                                                |

## Cáncer diagnostics: A new situation providing rational for our project

<u>Cancer is a multigenic disorder</u>

Therapy targetting mutated genes (BCR-ABL (CML), B-RAF (melanoma) has a lower toxicity, and better efficacy, but still not enough...

• High molecular diversity of cancer (A)

Each tumor sample has an unique combination of mutated genes.

Clinical efficacy of targetted therapy needs broad target blockage;

- Combinatory therapy; i.e MAPK plus Pl3K inhibition in hCRC - Multitarget therapy; Sorafenib (hCRC).

• Tumor dynamics is dominated by (B)

Microclonal competition.

Collaboration stroma-tumor.



Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases Seasant of Dense, Colorida Ball, Constraint Ball, Valley and Colorida Cancer Colorida (Colorida) Galaxies of Dense, Colorida Ball, Colorida Cancer Colorida (Colorida)

Il mosteduce, Generary anternet of Robuston anternet of Robuston anternet of Robuston monostration and anternet anternet monostration anternet anternet anternet monostration anternet anternet













| Type of renal tumor                            | Classic cytogenetic findings             | % Cases with<br>chromosomal<br>abnormality | N     | Platform  | Subtype         | Reference |
|------------------------------------------------|------------------------------------------|--------------------------------------------|-------|-----------|-----------------|-----------|
| Clear cell RCC                                 | del(3)(p): 3p14, 3p21, 3p25-p26          | 98                                         | 52    | LOH       |                 | (25)      |
|                                                |                                          | 98                                         | 118   | CG        |                 | (26)      |
|                                                |                                          | 81                                         | 26    | aCGH      |                 | (29)      |
|                                                |                                          | 100                                        | 11    | FISH      |                 | (28)      |
|                                                |                                          | 100                                        | 98    | SNP array |                 | (27)      |
| Papillary RCC                                  | Trisomy 7 and/or 17                      | 67/43                                      | 19/20 | FISH      | Low /high grade | (119)     |
|                                                |                                          | 100/38                                     | 9/16  | CGH       | Type 1/type 2   | (120)     |
|                                                |                                          | 100                                        | 6     | FISH      |                 | (28)      |
|                                                |                                          | 100/50                                     | 19    | SNP array | Type 1/type 2   | (27)      |
| Chromophobe RCC                                | Loss of 1, 2, 6, 10, 13, 17<br>and/or 21 | 95                                         | 10    | LOH       |                 | (25)      |
|                                                |                                          | 74                                         | 19    | FISH      |                 | (73)      |
|                                                |                                          | 100                                        | 4     | aCGH      |                 | (29)      |
|                                                |                                          | 100                                        | 12    | SNP array |                 | (27)      |
| Mucinous tubular and<br>spindle cell carcinoma | Loss of 1, 14, and 15                    | 100                                        | 6     | SNP array |                 | (27)      |
| Oncocytoma                                     | Chr 1 loss or normal                     | 100                                        | 10    | FISH      |                 | (73)      |
| -                                              |                                          | 100                                        | 15    | SNP array |                 | (27)      |

### RENAL EPITHELIAL NEOPLASMS; CLINICOPATHOLOGIC FEATURES AND SURVIVAL\*

|                                       | Clear Cell | Papillary | Chromophobe | Oncocytoma |
|---------------------------------------|------------|-----------|-------------|------------|
| Cases                                 | 410        | 156       | 84          | 97         |
| M : F                                 | 1.3:1      | 2.4:1     | 1.2:1       | 1.5:1      |
| Multifocal (%)                        | 9.5        | 35.2      | 10.7        | 14.4       |
| Age                                   | 61         | 60        | 59          | 66         |
| Size (cm)                             | 7.1        | 6.3       | 8.3         | 5.1        |
| рТ1-рТ2 (%)                           | 57         | 81        | 70          | 80         |
| Disease specific<br>survival (5/10yr) | 76/70%     | 86/82%    | 100/90%     | 100/100%   |

combined data: JSP 26;281 200

Diag Surg Pathol, 4th ed, 2004

**Conclusions:** Classification schemes for kidney cancer have undergone dramatic changes over the past two decades. Improvements in these classification schemes are important as pathologic variants differ not only in disease biology, but also in clinical behavior, prognosis, and response to systemic therapy. In the era of genomic medicine, further refinements in characterization of RCC subtypes will be critical to the

progress of this burgeoning clinical space. Such, Lopez-Beltran, Martignoni, et al 2014



| WHO histological classifica                                                                                                                     | <b>TABLE 2.</b> ISUP Vancouver Modification of WHO (2004)Histologic Classification of Kidney Tumors                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renal cell tumours<br>Clear cell renal cell carcinoma<br>Multilocular clear cell renal cell carcinoma                                           | Renal cell tumors<br>Papillary adenoma<br>Oncocytoma<br>Clear cell renal cell carcinoma<br>Multilocular cystic clear cell renal cell neoplasm of low malignant                                                                                                                                      |
| Papillary renal cell carcinoma<br>Chromophobe renal cell carcinoma<br>Carcinoma of the collecting ducts of Bellini<br>Benal medullary carcinoma | potential*<br>Papillary renal cell carcinoma†<br>Chromophobe renal cell carcinoma<br>Hubbid approvide chromophoba tumor*                                                                                                                                                                            |
| Xp11 translocation carcinomas<br>Carcinoma associated with neuroblastoma<br>Mucinous tubular and spindle cell carcinoma                         | Carcinoma of the collecting ducts of Bellini<br>Renal medullary carcinoma<br>MiT family translocation renal cell carcinoma*                                                                                                                                                                         |
| Renal cell carcinoma, unclassified<br>Papillary adenoma<br>Oncocytoma                                                                           | Xp11 translocation renal cell carcinoma<br>t(6;11) renal cell carcinoma*<br>Carcinoma associated with neuroblastoma                                                                                                                                                                                 |
| Metanephric tumours<br>Metanephric adenoma<br>Metanephric adenofibroma<br>Metanephric stromal tumour                                            | Mucinous tubular and spindle cell carcinoma<br>Tubulocystic renal cell carcinoma*<br>Acquired cystic disease associated renal cell carcinoma*<br>Clear cell (tubulo) papillary renal cell carcinoma*<br>Hereditary leiomyomatosis renal cell carcinoma syndrome-associated<br>renal cell carcinoma* |
| Leyomiomatous RCC<br>Thyroid-like RCC<br>Succinate Dehydrogenase B RCC<br>Anaplastic lymphoma kinase RCC                                        | Renal cell carcinoma, unclassified<br>Metanephric tumors<br>Metanephric adenoma<br>Metanephric adenofibroma<br>AJSP, 2014<br>Metanephric stromal tumor                                                                                                                                              |

| 14/        | UO alassifisation of tumouna a              | f the a laid and a |   |
|------------|---------------------------------------------|--------------------|---|
| vv         | HO classification of tumours o              | t the klane        | У |
|            | Renal cell tumours                          |                    |   |
|            | Clear cell renal cell carcinoma             | 8310/3             |   |
|            | Multilocular cystic renal neoplasm of low   |                    |   |
|            | malignant potential                         | 8316/1             |   |
|            | Papillary renal cell carcinoma              | 8255/1             |   |
|            | Hereditary leiomyomatosis and renal         |                    |   |
|            | cell carcinoma (HLRCC)-associated           |                    |   |
|            | renal cell carcinoma                        | 8311/3*            |   |
|            | Chromophobe renal cell carcinoma            | 8317/3             |   |
|            | Collecting duct carcinoma                   | 8319/3             |   |
|            | Renal medullary carcinoma                   | 8510/3             |   |
|            | MiT Family translocation carcinomas         | 8311/3             |   |
|            | Succinate dehydrogenase (SDH)-deficient     |                    |   |
|            | renal carcinoma                             | 8312/3             |   |
|            | Mucinous tubular and spindle cell carcinoma | 8480/3             |   |
|            | Tubulocystic renal cell carcinoma           | 8316/3             |   |
|            | Acquired cystic disease associated renal    |                    |   |
|            | cell carcinoma                              | 8316/3             |   |
|            | Clear cell papillary renal cell carcinoma   | 8323/1             |   |
| WHO 2016   | Renal cell carcinoma, unclassified          | 8312/3             |   |
| WI IC 2010 | Papillary adenoma                           | 8260/0             |   |
|            | Uncocytoma                                  | 8290/0             |   |
|            |                                             |                    |   |

|                                                       | Mole                  |              |                                     |                                                                                                                   | ry RCC                             |                                                                                                                                                                                                              |
|-------------------------------------------------------|-----------------------|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1.01 Features of heredit<br>Syndrome            | tary renal cell tumou | urs<br>Gene  | Protein                             | Tumour type                                                                                                       | Extraren<br>In the dermis          | al manifestations<br>In other organs                                                                                                                                                                         |
| Von Hippel–Lindau<br>syndrome                         | 3p25                  | VHL          | Von<br>Hippel–<br>Lindau<br>protein | Multiple, bilateral clear cell<br>renal cell carcinoma; renal<br>cysts                                            |                                    | Haemangioblastoma of the retina<br>and central nervous system;<br>phaeochromocytoma; pancreatic and renal<br>cysts; neuroendocrine tumours; epididymal<br>and parametrial cysts; tumours of the inner<br>ear |
| Hereditary papillary renal<br>cell carcinoma          | 7p31                  | MET          | MET                                 | Multiple, bilateral papillary<br>renal cell carcinoma (type 1)                                                    |                                    |                                                                                                                                                                                                              |
| Hereditary leiomyomatosis<br>and renal cell carcinoma | 1q42                  | FH           | Fumarate<br>hydratase               | Papillary RCC (non-type 1)                                                                                        | Leiomyoma                          | Uterine leiomyoma/leiomyosarcoma                                                                                                                                                                             |
| Familial papillary thyroid<br>carcinoma               | 1q21                  | Unknown      | Unknown                             | Papillary renal cell<br>carcinoma, oncocytomas                                                                    |                                    | Papillary thyroid carcinoma                                                                                                                                                                                  |
| Hyperparathyroidism<br>- jaw tumour syndrome          | 1q25                  | HRPT2        | Para-<br>fibromin                   | Mixed epithelial and stromal<br>tumours, papillary renal cell<br>carcinoma                                        |                                    | Parathyroid tumours; fibro-osseous jaw<br>tumours                                                                                                                                                            |
| Birt–Hogg–Dubé<br>syndrome                            | 17p11                 | BHD          | Folliculin                          | Multiple chromophobe<br>renal cell carcinoma, hybrid<br>chromophobe oncocytoma,<br>papillary renal cell carcinoma | Facial<br>fibrofolliculoma         | Pulmonary cysts; spontaneous<br>pneumothorax                                                                                                                                                                 |
| Tuberous sclerosis                                    | 9q34<br>16p13         | TSC1<br>TSC2 | Hamartin<br>Tuberin                 | Multiple, bilateral<br>angiomyolipomas;<br>lymphangioleiomyomatosis;<br>rare renal cell carcinomas                | Angiofibroma,<br>subungual fibroma | Cardiac rhabdomyoma; adenomatous small<br>intestine polyps; pulmonary and renal cysts;<br>cortical tuber; subependymal giant cell<br>astrocytomas                                                            |
| Constitutional chromo-<br>some 3 translocations       | 3p13-14               | Unknown      | Unknown                             | Multiple, bilateral clear cell<br>renal cell carcinoma                                                            |                                    |                                                                                                                                                                                                              |

### 

|                                                                 | Emergir                                                                                                                                                                                                                                                                                 | ng/provisional categories<br>RCC                                                                                                                                                                     | of                                                                                      |                                                                                             |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Table 1.02 Features of emerging/p                               | rovisional renal cell carcinomas                                                                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                         |                                                                                             |
|                                                                 | Clinical                                                                                                                                                                                                                                                                                | Morphological                                                                                                                                                                                        | Molecular                                                                               | Outcome                                                                                     |
| Oncocytic renal cell carcinoma<br>occurring after neuroblastoma | <ul> <li>Increased incidence of renal cell<br/>carcinoma among neuroblastoma<br/>survivors</li> <li>Heterogeneous group, with some MiT<br/>family translocation renal cell<br/>carcinomas</li> <li>One distinct oncocytic group with or<br/>without exposure to chemotherapy</li> </ul> | Solid, cystic, and papillary     Oncocytic cells with vacuales and calcification     No distinctive immunohistochemistry                                                                             | • No molecular marker                                                                   | • Limited follow-up                                                                         |
| Thyroid-like follicular renal cell<br>carcinoma                 | Broad age range     Slight female predominance                                                                                                                                                                                                                                          | Tan-brown gross appearance     Resembles thyroid parenchyma, with<br>follicies and colloid     dot dot dot dot dot dot dot dot dot                                                                   | Limited studies and<br>no distinctive molecular<br>marker                               | Most are indolent     There are rare     examples of     lymph node and     lung metastasis |
| ALK rearrangement-associated renal cell carcinoma               | Rare (< 10 cases reported)     3 distinct cases with ALK-vinculin fusion     in children with sickle cell trait                                                                                                                                                                         | For paediatric cases:<br>• Medullary location<br>• Large polygonal/spindle cells<br>• Eosinophilic cytoplasm with<br>intracytoplasmic lumina                                                         | ALK-VCL gene fusion                                                                     | Limited follow-up                                                                           |
| Renal cell carcinoma with<br>(angio)leiomyomatous stroma        | Adults     Adults     Male predominance     Historically categorized as a clear cell or     clear cell papillary renal cell carcinoma     Has also been called renal     angiomyoadenomatous tumour     Occurs sporadically or is associated     with tuberous sclerosis                | <ul> <li>Branching tubules / papillary tufts</li> <li>Clear cells</li> <li>Prominent vascular and smooth muscle stroma</li> <li>Positive for CK7, 34βE12, and CD10; negative for racemase</li> </ul> | No 3p deletion     No trisomy 7 or 17 <i>TCEB1</i> gene mutation     recently described | • Indolent, but<br>limited follow-up                                                        |
|                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                         |                                                                                             |













## MiTF/TFE translocation carcinomas

- CD10 and racemase positive either diffusely or focally
- EMA, AE1-AE3 and CK7 weakly or focally expressed
- Melan A and HMB45
   focally expressed



Clin Cancer Res. 2014 August 1; 20(15): 4129-4140. doi:10.1158/1078-0432.CCR-13-3036. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin remodeling genes Gabriel G. Malouf<sup>1,#</sup>, Xiaoping Su<sup>2,#</sup>, Hui Yao<sup>2,#</sup>, Jianjun Gao<sup>3</sup>, Liangwen Xiong<sup>3</sup>, Qiuming Experimental design-We performed RNA and exome sequencing on an exploratory set of TRCC (n=7), and validated our findings using The Cancer Genome Atlas (TCGA) clear-cell RCC (ccRCC) dataset (n=460). Results-Using the TCGA dataset, we identified 7 TRCC (1.5%) cases and determined their genomic profile. We discovered three novel partners of MITF/TFE (LUC7L3, KHSRP and KHDRBS2), which are involved in RNA splicing. TRCC displayed a unique gene expression signature as compared to other RCC types, and showed activation of MITF, the transforming growth factor  $\beta 1$  and the PI3K complex targets. Genes differentially spliced between TRCC and other RCC types were enriched for MITF and ID2 targets. Exome sequencing of TRCC revealed a distinct mutational spectrum as compared to ccRCC, with frequent mutations in chromatin remodeling genes (six of eight cases, three of which from the TCGA). In two cases, we identified mutations in INO80D, an ATP-dependent chromatin remodeling gene, previously shown to control the amplitude of the S phase. Knockdown of INO80D decreased cell proliferation in a novel cell line bearing LUC7L3-TFE3 translocation. Conclusions-This genome-wide study defines the incidence of TRCC within a ccRCCdirected project and expands the genomic spectrum of TRCC by identifying novel MITF/TFE partners involved in RNA splicing and frequent mutations in chromatin remodeling genes.













#### Journal of Pathology J Pathol 2014; 232: 32-42 Published online in Wiley Online Library (wileyonlinelibrary.com) D0I: 10.1002/path.4296

Targeted next-generation sequencing and non-coding RNA expression analysis of clear cell papillary renal cell carcinoma suggests distinct pathological mechanisms from other renal tumour subtypes

**ORIGINAL PAPER** 

Charles H Lawrie,<sup>12,3</sup>≉ Erika Larrea,' Gorka Larrinaga,⁴ Ibai Goicoechea,' María Arestin,' Marta Fernandez-Mercado,' Ondrej Hes,5 Francisco Cáceres,6 Lorea Manterola' and José I López7

#### Abstract

Clear cell tubulopapillary renal cell carcinoma (CCPRCC) is a recently described rare renal malignancy that displays characteristic gross, microscopic and immunohistochemical differences from other renal tumour types. However, CCPRCC remains a very poorly understood entity. We therefore sought to elucidate some of the molecular mechanisms involved in this neoplasm by carrying out targeted next-generation sequencing (NGS) to identify associated mutations, and in addition examined the expression of non-coding (nc) RNAs. We identified multiple somatic mutations in CCPRCC cases, including a recurrent [3/14 cases (21%)] non-synonymous T992I mutation in the MET proto-oncogene, a gene associated with epithelial-to-mesenchymal transition (EMT). Using a microarray approach, we found that the expression of mature (n = 1105) and pre-miRNAs (n = 1105), as well as snoRNA and scaRNAs (n = 2214), in CCPRCC cases differed from that of clear cell renal cell carcinoma (CCRCC) or papillary renal cell carcinoma (PRCC) tumours. Surprisingly, and unlike other renal tumour subtypes, we found that all five members of the miR-200 family were over-expressed in CCPRCC cases. As these miRNAs are intimately involved with EMT, we stained CCPRCC cases for E-cadherin, vimentin and  $\beta$ -catenin and found that the tumour cells of all cases were positive for all three markers, a combination rarely reported in other renal tumours that could have diagnostic implications. Taken together with the mutational analysis, these data suggest that EMT in CCPRCC tumour cells is incomplete or blocked, consistent with the indolent clinical course typical of this malignancy. In summary, as well as describing a novel pathological mechanism in renal carcinomas, this study adds to the mounting evidence that CCPRCC should be formally considered a distinct entity. Microarray data have been deposited in the GEO database [GEO accession number (GSE51554)]



| Genetic mutations in accorda<br>malignant potential tumour a<br>in clear cell papillary renal ce                                           | nce with a low<br>are not demonstrat<br>Il carcinoma                                                    | ed                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|
| Maria Rosaria <mark>Raspollini</mark> , <sup>1</sup> Francesca <mark>Castiglion</mark><br>Antonio <mark>Lopez-Beltran<sup>4,5</sup></mark> | e, <sup>1</sup> Liang Cheng, <sup>2</sup> Rodolfo Mc<br>Table 1 Genes and codons evaluated in the study | ontironi, <sup>3</sup> |
| ABSTRACT<br>Clear cell papillary renal cell carcinoma (CCPRCC) cases                                                                       | KRAS<br>KRAS                                                                                            | 12<br>13               |
| were evaluated for mutations on the following genes:<br>KRAS, NRAS, BRAF, PIK3CA, ALK, ERBB2, DDR2,                                        | KRAS<br>KRAS<br>KRAS                                                                                    | 59<br>61<br>117        |
| MAP2K1, RET and EGFR. Four male and three female patients of age 42–74 years were evaluated. All cases                                     | KRAS<br>NRAS<br>NRAS                                                                                    | 146<br>12<br>13        |
| were incidentally detected by ultrasound and ranged 1.8–3.5 cm. Microscopic examination showed variably                                    | NRAS<br>NRAS<br>NRAS                                                                                    | 59<br>61<br>117        |
| tubulopapillary, tubular acinar, cystic architecture and the<br>characteristic linear arrangement of nuclei. The cells were                | NRAS<br>BRAF<br>BRAF<br>PIK3CA                                                                          | 146<br>11<br>15        |
| reactive with CK7 (strong), CA IX (cup-shape) and 34 $\beta$ E12. CD10, AMACR/RACEMASE and GATA3 were                                      | PIK3CA<br>ALK<br>ALK                                                                                    | 20<br>22<br>23         |
| negative. There were no mutations on any of the<br>investigated genes. This preliminary observation supports                               | ALK<br>ERBB2<br>DDR2<br>DDR2                                                                            | 25<br>20<br>9          |
| the concept that CCPRCC might be indeed an indolent<br>tumour worth it to be named as clear cell papillary                                 | DDR2<br>MAP2K1<br>RET                                                                                   | 18<br>2<br>16          |
| neoplasm of low potential.                                                                                                                 | EGFR<br>EGFR<br>EGFR                                                                                    | 18<br>19<br>20         |

#### Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling

Sumanta K. Pal<sup>a,†</sup>, Toni K. Choueiri<sup>b,†</sup>, Kai Wang<sup>c</sup>, Depinder Khaira<sup>c</sup>, Jose A. Karam<sup>d</sup>, Eliezer Van Allen<sup>b</sup>, Norma A. Palma<sup>c</sup>, Mark N. Stein<sup>e</sup>, Adrienne Johnson<sup>c</sup>, Rachel Squillace<sup>c</sup>, Julia A. Elvin<sup>c</sup>, Juliann Chmielecki<sup>c</sup>, Roman Yelensky<sup>c</sup>, Evgeny Yakirevich<sup>f</sup>, Doron Lipson<sup>c</sup>, Douglas I. Lin<sup>g</sup>, Vincent A. Miller<sup>c</sup>, Philip J. Stephens<sup>c</sup>, Siraj M. Ali<sup>c,\*</sup>, Jeffrey S. Ross<sup>c,h</sup>

**Background:** Collecting duct carcinoma (CDC) is a rare type of renal cell carcinoma (RCC) originating from the renal medulla. Clinical outcomes are poor, and there are no consensus guidelines to guide therapy.

**Objective:** To determine genomic alterations (GAs) in a series of patients with locally advanced or metastatic CDC for whom genomic profiling was performed during the course of clinical care. **Design, setting and participants:** Formalin-fixed, paraffin-embedded blocks or slides were obtained for 17 patients with CDC. DNA was extracted and comprehensive genomic profiling was performed in a laboratory certified under the Clinical Laboratory Improvement Amendments. **Outcome measurements and statistical analysis:** Bayesian algorithms and local alignment algorithms were used to detect substitutions and insertions/deletions, respectively. A comparison to normal control samples was used to detect copy number alterations. Clinically relevant GAs (CRGAs) were defined as those linked to approved or investigational targeted therapies. **Results and limitations:** The median age in the cohort was 53 yr (range 26–73), and 14 primary tumors and three metastatic sites assessed. A total of 36 GAs were in NF2 (5/17, 29%), SEID2 (4/17, 24%), SMARCB1 (3/17, 18%), and CDKN2A (2/17, 12%). Of nine cases assessed for FH GAs, two patients had FH homozygous loss. A limitation is that targeted interrogation of genes known to be implicated in other cancers was performed, so mutations outside of these cannot be excluded.

**Conclusions:** Recurrent CRGAs were detected in this series of CDC cases and suggest a possible benefit from targeted therapy. In particular, mTOR inhibitors may be of interest in patients with NF2 alterations. Alterations in FH and SMARCB1 also occurred in a mutually exclusive manner to NF2 alterations.

Patient summary: This report provides important genomic insights into collecting duct carcinoma, a rare type of renal cell carcinoma with a very aggressive course. These insights could further rationalize the use of targeted therapies for rare tumors according to the individual genomic alterations harbored.









| QUALITATIVE ANALYSIS OF IHC MARKERS IN<br>RENAL TUMORS |                                      |                                           |                             |                             |  |  |
|--------------------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------|-----------------------------|--|--|
|                                                        | Clear cell RCC                       | Papillary RCC                             | Chromophobe<br>RCC          | Oncocytoma                  |  |  |
| Vimentin                                               | Cytoplasmic<br>Diffuse               | Absent*                                   | Absent*                     | Absent                      |  |  |
| CA IX                                                  | Membranous<br>Cytoplasmic<br>Diffuse | Cytoplasmic<br>Focal<br>Tips/necrosis     | Cytoplasmic<br>Focal (rare) | Absent                      |  |  |
| CD10                                                   | Membranous<br>Cytoplasmic<br>Diffuse | Membranous/<br>apical<br>Focal or diffuse | Cytoplasmic<br>Focal        | Cytoplasmic<br>Focal        |  |  |
| AMACR                                                  | Cytoplasmic<br>Focal or diffuse      | Cytoplasmic<br>Finely granular<br>Diffuse | Cytoplasmic<br>Focal        | Cytoplasmic<br>Focal        |  |  |
| CK7                                                    | Cytoplasmic<br>Focal                 | Membranous<br>Diffuse                     | Membranous<br>Diffuse       | Cytoplasmic<br>Focal (rare) |  |  |
| CD117                                                  | Cytoplasmic<br>Focal                 | Cytoplasmic<br>Focal (rare)               | Membranous<br>Diffuse       | Cytoplasmic<br>Diffuse      |  |  |



| Model                                   | Sample size             | Target population                             | Predictors                                                                                             | C-index                               |
|-----------------------------------------|-------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
| Zisman et al. [14]                      | 661                     | RCC of all stages                             | - AJCC<br>- Fuhrman grade<br>- ECOG-PS                                                                 | 82-86%                                |
| Zisman et al. [15]<br>Frank et al. [30] | 814<br>1801             | RCC of all stages<br>Localized clear cell RCC | - TNM (1997) plus ECOG-PS<br>- TNM (1997)<br>- Tumour size<br>- Nuclear grade<br>- Tumour necrosis     | 73% 79-86%<br>85% (int.) 81-82% (val) |
| Kim et al. [86]                         | 318                     | RCC of all stages                             | - M stage<br>- Metastatic CAIX<br>- p53<br>- Vimentin<br>- Gelsolin                                    | 79%                                   |
| Kim et al. [187]                        | 150                     | Metastatic clear cell RCC                     | - T stage<br>- ECOG-PS<br>- CAIX<br>- Vimentin<br>- p53<br>- PTEN                                      | 681                                   |
| Thompson et al. [116]                   | 1560                    | Localized clear cell RCC                      | - TNM (1997)<br>- Tumour size<br>- Nuclear grade<br>- Lumour necrosis                                  | R.F.                                  |
| Karakiewicz et al. [23]                 | 2530 (dev.) 1422 (val.) | Clear cell, papillary,<br>chromophobe RCC     | - pT stage<br>- pN stage<br>- M stage<br>- Tumour size<br>- Fuhrman grade<br>- Symptoms classification | 88-89% (val.)                         |
| Karakiewicz et al. [189]                | 2530 (dev.) 3560 (val.) | RCC of all stages                             | - pT stage<br>- pN stage<br>- M stage<br>- Tumour size<br>- Fuhrman grade<br>- Symptoms classification | 87–91% (val.)                         |
| Parker et al. [29]                      | 818                     | Clear cell RCC                                | - 87-H1<br>- Survivin<br>- Ki-67                                                                       | 73%                                   |







### Loss of chromosome 9p is an independent prognostic factor in patients with clear cell renal cell carcinoma

Matteo Brunelli<sup>1</sup>, Albino Eccher<sup>1</sup>, Stefano Gobbo<sup>1</sup>, Vincenzo Ficarra<sup>2</sup>, Giacomo Novara<sup>2</sup>, Paolo Cossu-Rocca<sup>3</sup>, Franco Bonetti<sup>1</sup>, Fabio Menestrina<sup>1</sup>, Liang Cheng<sup>4</sup>, John N Eble<sup>4</sup> and Guido Martignoni<sup>1</sup>



















## PRCC Immunohistochemistry

- Diffuse positivity for CK7 (more often in type 1 than in type 2)
- Racemase diffusely positive with cytoplasmic granular staining
- CD10 usually positive with luminal membranous staining



### PAPILLARY RENAL CELL CARCINOMA: Most frequent DNA sequence copy number gains

|              | Type 1 | Type 2       |         |
|--------------|--------|--------------|---------|
|              | n=9    | <i>n</i> =16 | p value |
| ′ <b>p</b> + | 100    | 31.2         | 0.004   |
| q+           | 66.7   | 1.2          | NS      |
| 7p+          | 100    | 7.5          | 0.008   |
| 7q+          | 100    | 68.8         | NS      |

## Papillary Carcinoma Molecular Pathology

- Hereditary : germline mutations of the c-MET protooncogene at 7p31
- Sporadic: gains of chromosomes 7 and 17 and loss of chromosome Y in male patients





#### ABSTRACT ORIGINAL ARTICLE BACKGROUND Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, Comprehensive Molecular Characterization including tumors with indolent, multifocal presentation and solitary tumors with of Papillary Renal-Cell Carcinoma an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for adne Atlas Re vanced disease exist. METHODS We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renalcell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.)



33













# Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma

Mark Bi<sup>s,b</sup>, Siming Zhao<sup>s,b</sup>, Jonathan W. Said<sup>c</sup>, Maria J. Merino<sup>d</sup>, Adebowale J. Adeniran<sup>e</sup>, Zuoquan Xie<sup>f</sup>, Cayce B. Nawa<sup>f</sup>, Jaehyuk Choi<sup>g</sup>, Arie S. Belldegrun<sup>h</sup>, Allan J. Pantuck<sup>h</sup>, Harriet M. Kluger<sup>i</sup>, Kaya Bilgüvar<sup>a</sup>, Richard P. Lifton<sup>a,b,1</sup>, and Brian Shuch<sup>C1</sup>

The presence of sarcomatoid features in clear cell renal cell carcinoma (ccRCC) confers a poor prognosis and is of unknown pathogenesis. We performed exome sequencing of matched normal-carcinomatous-sarcomatoid specimens from 21 subjects. Two tumors had hypermutation consistent with mismatch repair deficiency. In the remainder, sarcomatoid and carcinomatous elements shared 42% of somatic single-nucleotide variants (SSNVs). Sarcomatoid elements had a higher overall SSNV burden (mean 90 vs. 63 SSNVs,  $P = 4.0 \times 10^{-4}$ ), increased frequency of nonsynonymous SSNVs in Pan-Cancer genes (mean 1.4 vs. 0.26, P = 0.002), and increased frequency of loss of heterozygosity (LOH) across the genome (median 913 vs. 460 Mb in LOH, P < 0.05), with significant recurrent LOH on chromosomes 1p, 9, 10, 14, 17p, 18, and 22. The most frequent SSNVs shared by carcinomatous and sarcomatoid elements were in known ccRCC genes including von Hippel-Lindau tumor suppressor (VHL), polybromo 1 (PBRM1), SET domain containing 2 (SETD2), phosphatase and tensin homolog (PTEN). Most interestingly, sarcomatoid elements acquired biallelic tumor protein p53 (*TP53*) mutations in 32% of tumors ( $P = 5.47 \times 10^{-17}$ ); *TP53* mutations were absent in carcinomatous elements in nonhypermutated tumors and rare in previously studied ccRCCs. Mutations in known cancer drivers ATrich interaction domain 1A (ARID1A) and BRCA1 associated protein 1 (BAP1) were significantly mutated in sarcomatoid elements and were mutually exclusive with TP53 and each other. These findings provide evidence that sarcomatoid elements arise from dedifferentiation of carcinomatous ccRCCs and implicate specific genes in this process. These findings have implications for the treatment of patients with these poor-prognosis cancers.

































# Molecular Pathology of RCC

| Target            | Sunitinib       | Sorafenib       | Bevacizumab   | Temsirolimus        |
|-------------------|-----------------|-----------------|---------------|---------------------|
| VEGF              | No inhibition   | No inhibition   | Inhibition    | No inhibition       |
| VEGFR1 (Flt-1)    | Inhibits target | No inhibition   | No inhibition | No inhibition       |
| VEGFR2 (Flk-1/KDR | No inhibition   | Inhibits target | No inhibition | No inhibition       |
| VEGFR3 (Flt-4)    | Inhibits target | Inhibits target | No inhibition | No inhibition       |
| PDGFR-α           | No inhibition   | No inhibition   | No inhibition | No inhibition       |
| PDGFR-β           | Inhibits target | Inhibits target | No inhibition | No inhibition       |
| c-kit             | Inhibits target | Inhibits target | No inhibition | No inhibition       |
| FLT-3             | Inhibits target | Inhibits target | No inhibition | No inhibition       |
| SCFR              | Inhibits target | No inhibition   | No inhibition | No inhibition       |
| RET               | Inhibits target | No inhibition   | No inhibition | No inhibition       |
| FAK               | No inhibition   | No inhibition   | No inhibition | No inhibition       |
| b-FGF             | No inhibition   | No inhibition   | No inhibition | No inhibition       |
| B-raf kinase      | No inhibition   | Inhibits target | No inhibition | No inhibition       |
| C-raf kinase      | No inhibition   | Inhibits target | No inhibition | No inhibition       |
| mTOR              | No inhibition   | No inhibition   | No inhibition | Inhibits targe      |
|                   |                 |                 |               |                     |
|                   |                 |                 | Lopez         | -Beltran et al 2008 |

| Hypoxia Inducible                                                                             | Proliferation                                                                         | Cell Cycle Regulation                                                                                                                                                                                         | Cell Adhesion                                                                                                                       | Miscellaneous                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ● CAIX<br>● CAXII<br>● CXCR-4<br>● HIF-1α<br>● VECF<br>● IGF-1                                | • Ki-67<br>• PCNA<br>• Ag-NORs                                                        | <ul> <li>p53</li> <li>bcl-2</li> <li>PTEN</li> <li>Cyclin A</li> <li>Akt</li> <li>S6 kinase</li> <li>p27</li> </ul>                                                                                           | • EpCAM<br>• EMA<br>• E-cadherin<br>• α-Catenin<br>• Cadherin-6                                                                     | Gelsolin     Vimentin     CA-125     CD44     Androgen receptors     Caveolin-1     VEGF-R     Na+/K+ ATPase subunit     DNA ploidy                                  |
| TPase = adenosine triphosph<br>ell adhesion molecule; HIP-10<br>PEGP = vascalar endothelial y | atase; CAIX = carbonic anh<br>= hypoxia-inducible factor<br>growth factor; VEGP-R = V | y drase IX; CAXII = carbonic anhydras<br>r–1a; KGF-1 = insulin-like growth fac<br>VEGF receptor.                                                                                                              | e XII; CXCR-4 = CXC chanok<br>lor-1; PTEN = phosphatase an                                                                          | ine receptor-4; EMA = ; EpCAM = epithd<br>ad teasta homolog deleted on chromosome                                                                                    |
| TPase = ademostre (trphosph<br>il adheston molecule; HIF-1a<br>BGP = vascalar endothelial y   | itase; CAIX = carbonicanh<br>= hyposta-inductile factor<br>prowth factor; VEGP-R = V  | ydrasz IX; CAXII = carboniz awbydras<br>- Lac; KF-2 = trusulin-like growith fac<br>VEGP receptor:<br>A Points Q 10 2<br>Metastatic<br>Localized RCC                                                           | e XII; CXCR-4 = CXC chernolo<br>tor-1; PTEN = phosphatase at<br>20 . 30 . 40 . 50 .<br>Negative                                     | iter receptor-4: EPA4 = ; EPC-AM = q prihe<br>al censu honcolog deleted on chronosome<br>60 , 70 , 80 , 90 , 100<br>Metastatic RCC                                   |
| TPase = admostre triphosph.<br>di adheston makeule, HIF-LA<br>EGF = vascalar endobelial j     | itase; CAIX = carbonicanh<br>= hypotia-tuducthle factor<br>rowth factor; VEGF-R = V   | ydrasz IX; CAXII = carbotic asbytiras<br>- Lox; KG7-1 = unsultin-like growth fac<br>VEGP receptor.<br>A<br>Points 00<br>Metastatic<br>Metastatic<br>CAIX<br>Positive<br>p53                                   | e XII; CXCE4 = CXC chanols<br>lon-1; PTEN = phosphatasc at<br>0, 30, 40, 50,<br>Negative<br>Positive                                | itercogtor-4: EPA4 = ; EPCAM = qrith<br>al censte honolog deleted on chronosome<br>60 , 70 , 80 , 90 , 190<br>Metastatio                                             |
| TPase = admosthe triphosph<br>(ii adheston makeule; HFI-Lin<br>EGF = wascalar eudothetial ;   | tateς-CAX = carbonicah<br>= hypona-tahache fucto<br>growth factor; VEGF-R = 1         | ydrast IX; CAXII = carbotic asbydras<br>r-1a; KGF-1 = tisulin-like growth fac<br>VEGF receptor.<br>A Points 0 10 3<br>Metastatic<br>Metastatic CAIX<br>p53 Negative<br>Vimentin Negative<br>Gelsolin Negative | e XII; CXCEA = CXC chemolo<br>con-1; PTEN = phosphatasc as<br>20 30 40 50 .<br>Negative<br>Positive<br>Positive                     | iter receptor-4: EPA4 = ; EPC-AM = q pith<br>al texts honcolog deleted on chronosome<br>60 , 70 , 80 , 90 , 100<br>Metastatic RCC                                    |
| TPase = admostre triphosph<br>(ii adhesta maceule, HHF-LA<br>EGP = vascalar eudobelial (      | ntase, CAIX = carbonicanh<br>= hyposta-taluelle fuetoo<br>growth factor; VEGP-R = V   | ydraz IX; CAXII = carbotix asbytins<br>Hain Gerei - a bisultin-like growth fac<br>VEGP receptor.<br>Metastatic<br>p53 Negative<br>Vimentin Negative<br>Vimentin Negative<br>Total Points 0 20 40              | e XII; CXCE4 = CXC chanols<br>tor-I; PTEN = phosphatasc at<br>Negative<br>Positive<br>Positive<br>60 80 100 120 140                 | thereogran-4: EPA4 = ; EPCAM = grith<br>al crusts homolog deleted on chromosome<br>60 70 80 90 100<br>Metastatic RCC<br>160 180 200 220 240 260                      |
| TPase = admostre triphosph<br>if adheston makeule, HIF-LA<br>EGF = vascalar endothetial j     | ntase, CAX = carbont can'h<br>= hyposta-stalualle facto<br>growth factor; VEGF-R = 1  | A Points 0 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                              | 2 XII; CXCE4 = CXC chanols<br>ion-1; PTEN = phosphatasc at<br>Negative<br>Positive<br>Positive<br>60 80 100 120 140<br>0.8 0.65 0.5 | the receptor-4: EPA4 = ; EPC-AM = ortho<br>af crusts homeolog deficed on chromosome<br>60 70 80 90 100<br>Metastatic RCC<br>160 180 200 220 240 260<br>0.35 0.2 0.05 |



- Gene expression profiling study, 31 adult renal tumors (including 13 clear cell renal cell carcinomas, 5 papillary renal cell carcinomas, 4 chromophobe renal cell carcinomas, 3 oncocytomas, and 6 angiomyolipomas) were analyzed.
- The authors found that clear cell renal cell carcinomas, chromophobe renal cell carcinoma, and papillary renal cell carcinomas expressed different panel of genes, which correlated with cellular origin of the tumors. Shuetz et al JMD 2008





| CLINICAL TRIALS                                                                                     | TO CONSIDER                                                                                                                                                                                                                                                                                                          |                                                   |                                                                    |                                                                                                                      |                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| public domain is contin<br>complete list of availabl<br>terms provided below.<br>bar.               | uously updated and sho<br>e trials. In order to condu<br>For more information about                                                                                                                                                                                                                                  | uld be invest<br>uct a more th<br>ut a specific o | tigated by the phy<br>orough search, pl<br>clinical trial, type th | /sician or research staff. This is r<br>ease go to www.clinicaltrials.gov a<br>ne NCT ID of the trial indicated belo | not meant to be<br>nd use the sear<br>ow into the sear |  |  |  |
| GENE                                                                                                | RATIONALE FOR PO                                                                                                                                                                                                                                                                                                     | FENTIAL CL                                        | INICAL TRIALS                                                      |                                                                                                                      |                                                        |  |  |  |
|                                                                                                     | Activating BRAF mutations or BRAF amplification may predict sensitivity to inhibition of the MAPK pathway<br>by agents such as Raf inhibitors and MEK1/2 inhibitors.                                                                                                                                                 |                                                   |                                                                    |                                                                                                                      |                                                        |  |  |  |
| SND1-BRAF fusion                                                                                    | Examples of clinical trials that may be appropriate for this patient are listed below. These trials were<br>identified through a search of the trial website clinicaltrials gov using keyword terms such as "BRAF", "MEK"<br>"trametinib", "regoratenib", "sordereib", "pancreatic carcinoma", and/or "solid tumor". |                                                   |                                                                    |                                                                                                                      |                                                        |  |  |  |
|                                                                                                     | namennino, regonalerni                                                                                                                                                                                                                                                                                               |                                                   |                                                                    |                                                                                                                      |                                                        |  |  |  |
| TITLE                                                                                               | trametinio, regorateni                                                                                                                                                                                                                                                                                               | PHASE                                             | TARGETS                                                            | LOCATIONS                                                                                                            | NCT ID                                                 |  |  |  |
| TITLE<br>Phase I Study of the Co<br>VEGFR Inhibitor, AZD2<br>AZD6244, in the Treatm<br>Malignancies | mbination of the<br>171, and MEK Inhibitor,<br>lent of Solid                                                                                                                                                                                                                                                         | PHASE<br>Phase 1                                  | TARGETS<br>MEK, VEGFR                                              | LOCATIONS<br>Florida, Minnesota                                                                                      | NCT ID<br>NCT0136405                                   |  |  |  |

|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A      | ) د                | Clir             | nic                | al               | S      | er     | vi      | ce      |          |        |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|------------------|--------------------|------------------|--------|--------|---------|---------|----------|--------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Inte               | eu               | rat                | ter              | ں<br>ب | .∕ie   | -w      | 1       |          |        |
| APPE                                             | NDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                    |                  |                    |                  |        |        |         |         |          |        |
| GENES                                            | ASSAYE                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | JNDATIONO          | NE               |                    |                  |        |        |         |         |          |        |
| Foundation<br>therapy,<br>current a<br>periodica | FoundationOne is designed to include all genes known to be somalically allered in human solid tumors that are validated targets 1<br>therapy, either approved or in clinical traits, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The<br>service and the second second<br>periodicality interfet how knowledge about carent binkny. |        |                    |                  |                    |                  |        |        |         |         |          |        |
| ABL1                                             | BARD1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CD79A  | CSF1R              | EZH2             | FGFR2              | HRAS             | KEAP1  | MLL2   | NRAS    | PRKDC   | SMARCB1  | TSC2   |
| AKT1                                             | BCL2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CD79B  | CTCF               | FAM123B<br>(WTX) | FGFR3              | IDH1             | KIT    | MPL    | NTRK1   | PTCH1   | SMO      | TSHR   |
| AKT2                                             | BCL2L2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CDC73  | CTNNA1             | FAM46C           | FGFR4              | IDH2             | KLHL6  | MRE11A | NTRK2   | PTEN    | SOCS1    | VHL    |
| AKT3                                             | BCL6                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDH1   | CTNNB1             | FANCA            | FLT1               | IGF1R            | KRAS   | MSH2   | NTRK3   | PTPN11  | SOX10    | WISP3  |
| ALK                                              | BCOR                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDK12  | DAXX               | FANCC            | FLT3               | IKBKE            | LRP1B  | MSH6   | NUP93   | RAD50   | SOX2     | WT1    |
| APC                                              | BCORL1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CDK4   | DDR2               | FANCD2           | FLT4               | IKZF1            | MAP2K1 | MTOR   | PAK3    | RAD51   | SPEN     | XPO1   |
| AR                                               | BLM                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CDK6   | DNMT3A             | FANCE            | FOXL2              | IL7R             | MAP2K2 | MUTYH  | PALB2   | RAF1    | SPOP     | ZNF217 |
| ARAF                                             | BRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CDK8   | DOT1L              | FANCE            | GATA1              | INHBA            | MAP2K4 | MYC    | PAX5    | RARA    | SRC      | ZNF703 |
| ARFRP1                                           | BRCA1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDKN1B | EGFR               | FANCG            | GATA2              | IRF4             | MAP3K1 | MYCL1  | PBRM1   | RB1     | STAG2    |        |
| ARID1A                                           | BRCA2                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDKN2A | EMSY<br>(C11orf30) | FANCL            | GATA3              | IRS2             | MCL1   | MYCN   | PDGFRA  | RET     | STAT4    |        |
| ARID2                                            | BRIP1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDKN2B | EP300              | FBXW7            | GID4<br>(C17orf39) | JAK1             | MDM2   | MYD88  | PDGFRB  | RICTOR  | STK11    |        |
| ASXL1                                            | втк                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CDKN2C | EPHA3              | FGF10            | GNA11              | JAK2             | MDM4   | NF1    | PDK1    | RNF43   | SUFU     |        |
| ATM                                              | CARD11                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CEBPA  | EPHA5              | FGF14            | GNA13              | JAK3             | MED12  | NF2    | PIK3CA  | RPTOR   | TET2     |        |
| ATR                                              | CBFB                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHEK1  | EPHB1              | FGF19            | GNAQ               | JUN              | MEF2B  | NFE2L2 | PIK3CG  | RUNX1   | TGFBR2   |        |
| ATRX                                             | CBL                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHEK2  | ERBB2              | FGF23            | GNAS               | KAT6A<br>(MYST3) | MEN1   | NFKBIA | PIK3R1  | SETD2   | TNFAIP3  |        |
| AURKA                                            | CCND1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CIC    | ERBB3              | FGF3             | GPR124             | KDM5A            | MET    | NKX2-1 | PIK3R2  | SF3B1   | TNFRSF14 |        |
| AURKB                                            | CCND2                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CREBBP | ERBB4              | FGF4             | GRIN2A             | KDM5C            | MITE   | NOTCH1 | PPP2R1A | SMAD2   | TOP1     |        |
| AXL                                              | CCND3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRKL   | ERG                | FGF6             | GSK3B              | KDM6A            | MLH1   | NOTCH2 | PRDM1   | SMAD4   | TP53     |        |
| BAP1                                             | CCNE1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CRLF2  | ESR1               | FGFR1            | HGF                | KDR              | MLL    | NPM1   | PRKAR1A | SMARCA4 | TSC1     |        |
| Select Re                                        | arrangeme                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nts    |                    |                  |                    |                  |        |        |         |         |          |        |
| ALK                                              | BCL2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BCR    | BRAF               | EGFR             | ETV1               | ETV4             | ETV5   | ETV6   | EWSR1   | MLL     | MYC      | NTRK1  |
| PDGFRA                                           | RAF1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RARA   | RET                | ROS1             | TMPRSS2            |                  |        |        |         |         |          |        |

| Agent         | Description                                     | Trial ID number | Phase | Design                                                                                                          |  |  |
|---------------|-------------------------------------------------|-----------------|-------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Brivanib      | Dual VEGFR2 and FGFR-1                          | NCT01253668     | П     | RCC patients after prior treatment with TKI or<br>bevacizumab                                                   |  |  |
| Crizotinib    | Alk and c-MET TKI                               | NCT01524926     | Π     | Patients with solid tumors                                                                                      |  |  |
| BIBF 120      | VEGFR 1–3 PDGFR and<br>FGFR TKI                 | NCT01024920     | п     | versus sunitinib in untreated mRCC patients                                                                     |  |  |
| VEGF-Trap     | Soluble decoy receptor;<br>derivative of VEGFR1 | NCT00357760     | п     | ccRCC patients after at least 1 prior treatment with $\ensuremath{\mathrm{TKI}}$                                |  |  |
| Ridaforolimus | MTORC1 selective                                | NCT01169532     | Ι     | In combination with <i>vorinostat</i> in patients with solid tumors                                             |  |  |
| Reality       | inhibitor                                       | NCT01295632     | Ι     | In combination with $MK2206$ or $\gamma$ -secretase inhibitor $MK$ -0752 in patients with advanced solid tumors |  |  |
| MK-2206       | AKT inhibitor                                   | NCT01239342     | Π     | Versus everolimus in refractory RCC patients                                                                    |  |  |
| NVP-BEZ235    | Dual PI3K/mTOR inhibitor                        | NCT01482156     | Ι     | In combination with everolimus in patients with<br>advanced solid tumors                                        |  |  |
| GDC-0980      | Dual PI3K/mTOR inhibitor                        | NCT01442090     | П     | In comparison with <i>everolimus</i> in mRCC patients<br>progressed on VEGF-targeted therapy                    |  |  |
| AMG-386       | Ang-1/2 inhibitor                               | NCT01548482     | П     | In combination with <i>temsirolimus</i> in patients with advanced solid tumors                                  |  |  |
| MDX-1203      | Anti-CD70 Ab-drug<br>conjugate                  | NCT00944905     | Ι     | Pretreated ccRCC or B-cell non-Hodgkin's lymphoma                                                               |  |  |
| MDX-1411      | Anti-CD70 Ab-drug<br>conjugate                  | NCT00656734     | Ι     | ccRCC pts treated with up to 6 prior systemic therapies                                                         |  |  |
| SGN-75        | Anti-CD70 Ab-drug<br>conjugate                  | NCT01015911     | Ι     | Pretreated ccRCC or B-cell non-Hodgkin's lymphoma                                                               |  |  |
| Girentuximab  | Chimeric mAb cG250                              | NCT'00087022    | III   | Adjuvant cG250 versus placebo in pts with ccRCC and<br>high risk of recurrence                                  |  |  |
| cG250-Lu177   | Lutetium-177 labeled<br>cG250                   | NCT00142415     | п     | pts with advanced and progressive ccRCC                                                                         |  |  |
| 90Y-cG250     | Yttrium-90 labeled cG250                        | NCT00199875     | Ι     | pts with advanced and progressive ccRCC                                                                         |  |  |
| Panitumumab   | Anti-EGFR mAb                                   | NCT00425035     | П     | mRCC pts naïve or after cytokine treatment                                                                      |  |  |
| Vorinostat    | HDAC inhibitor                                  | NCT00278395     | Π     | mRCC pts naïve or after cytokine treatment                                                                      |  |  |
| RO4929097     | $\gamma$ -secretase/Notch inhibitor             | NCT01141569     | П     | ccRCC pts after anti-VEGF and/or mTOR inhibitor<br>and/or immunotherapy failure                                 |  |  |
| AS1411        | 26-mer DNA aptamer                              | NCT00740441     | Π     | ccRCC pts after at least 1 prior treatment with TKI                                                             |  |  |













| Table 2 – Common histologic renal cell carcinoma subtypes and their appearance and associated molecular alterations |                                                      |                                                                                                                                                   |                                                                                                                       |                                                                                                                                          |                                                       |                                                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| Tumor type                                                                                                          | type Subtype Gross appearance Microscopic appearance |                                                                                                                                                   |                                                                                                                       |                                                                                                                                          | Known somatic<br>alterations                          | Cytogenetic<br>alterations                                                                                          |  |  |  |
| Clear cell                                                                                                          | -                                                    | Yellow, well<br>circumscribed, and can<br>possess distinct areas of<br>hemorrhage and necrosis                                                    | Abundant clear cytoplasm d<br>lipid and glycogen                                                                      | ue to deposition of                                                                                                                      | VHL, PBRM1,<br>SETD2, BAP1,<br>JARID1A, mTOR,<br>PI3K | 3p (90%), 14q, 8p,<br>and 9p and<br>gains at 5q and 12q                                                             |  |  |  |
| Papillary                                                                                                           | 1<br>2                                               | Mixed cystic/solid<br>consistency. Papillary RCC<br>lesions are often reddish-<br>brown and frequently<br>have a well-demarcated<br>pseudocapsule | Papillary or tubulopapillary<br>architecture. Calcifications,<br>necrosis, and foamy<br>macrophage infiltration.      | Type 1: thin,<br>basophilic papillae<br>with clear cytoplasm<br>Type 2: heterogenous,<br>thicker papillae and<br>eosinophilic cytoplasm. | MET<br>NRF2, CUL3                                     | Gains of 7, 8q, 12q, 16p,<br>17, 20, and loss<br>of 9p. Papillary type 2<br>with gains of 8q,<br>loss of 1p and 9p. |  |  |  |
| Chromophobe                                                                                                         | Classic<br>Eosinophilic                              | Large,<br>well-circumscribed,<br>tan-brown tumor with<br>occasional central scar                                                                  | Distinct cell borders and<br>a voluminous cytoplasm,<br>nuclear morphology with<br>perinuclear halos,<br>binucleation | Classic: pale cytoplasm<br>Eosinophilic: large<br>tumor cells with fine<br>eosinophilic granules                                         | TP53                                                  | Loss of chromosomes<br>1, 2, 6, 10, 13, and 17                                                                      |  |  |  |
| Oncocytoma                                                                                                          | -                                                    | Mahogany color, well<br>circumscribed, occasional<br>central scar, and rarely<br>with necrosis                                                    | Polygonal cell with abundar<br>cytoplasm and uniform, rou                                                             | t eosinophilic<br>nd nuclei                                                                                                              | Mitochondrial<br>complex<br>I genes                   | Loss of 1 p, loss of Y,<br>often normal karyotype                                                                   |  |  |  |
| Collecting duct                                                                                                     | -                                                    | Partially cystic, white-<br>gray appearance and<br>often exhibit invasion<br>into the renal sinus                                                 | Tubulopapillary pattern, ofte<br>columnar pattern with hobr<br>presence of mucinous mater<br>stroma                   | en with cells taking<br>ail appearance,<br>ial, desmoplastic                                                                             | Unknown                                               | Losses at 8p, 16p, 1p, 9p<br>and gains at 13q                                                                       |  |  |  |
| Medullary                                                                                                           | -                                                    | Tan/white, poorly defined<br>capsule, extensive<br>hemorrhage and necrosis                                                                        | Poorly differentiated, eosino<br>inflammatory infiltative cell<br>reticular pattern common                            | philic cells;<br>s; sheet-like or                                                                                                        | Unknown                                               | Poorly described, but<br>believed normal<br>karvotype                                                               |  |  |  |
| MiT family                                                                                                          | -                                                    | Yellowish tissue often<br>studded by hemorrhage<br>and necrosis                                                                                   | Papillary or nested architect<br>eosinophilic cells with volur                                                        | ure, granular and<br>ninous, cytoplasm                                                                                                   | -                                                     | Recurrent translocations<br>involving Xp11.2 (TFE3)<br>or 6p21(TFEB)                                                |  |  |  |



### **Future directions**

- · Genétics NGS
  - ccRCC- RECORD-3 261 pts
    - Somatic mutations in 341 genes.
    - With predictiv importance.
      - PBRM1 mt (41% da amostra) ↑ PFS (11,1 vs. 5,3m) com Everolimus.
        - KDM5C mt ↑ PFS (PFS 20.6 vs 8.4m) com Sunitinib.
  - Papilary RCC- 161 dts
    - Tipos 1 e 2.
    - Tipo 1 com mutações MET em 81% casos →Cabozantinib / Foretinib?
    - Tipo 2 various (3 or more subtypes)
  - Collecting Duct Ca 17 dts
    - 36 Genétic alt. (2.1 / case)
      - NF2 (5/17, 29%) → mTORi ?
      - SETD2 (4/17, 24%)
      - SMARCB1 (3/17, 18%)
      - CDKN2A (2/17, 12%) → Palbociclib?





