Научно-практическая конференция ОНКОМАММОЛОГИЯ 8-9 декабря 2017 года

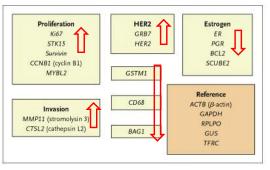
ОПЫТ ПРИМЕНЕНИЯ ТРАНСКРИПЦИОННЫХ СИГНАТУР ДЛЯ ОПРЕДЕЛЕНИЯ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ ПОДТИПОВ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ

ФГБУ «НМИЦ АГИП ИМ. АКАД. В.И. КУЛАКОВА» МЗ РФ

ДОКЛАДЧИК: С.Н.С. ЛАБОРАТОРИИ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ МЕТОДОВ, Д.Б.Н. БУРМЕНСКАЯ ОЛЬГА ВЛАДИМИРОВНА

09.12.2017

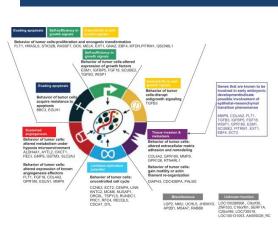
АКТУАЛЬНОСТЬ НИР



- РМЖ составляет гетерогенную группу заболеваний
- ➤ Гетерогенность РМЖ впервые продемонстрирована в 2000 г. Регои С.М. при использовании микроматричного анализа (экпрессия
- ➤ Разработан ряд диагностических систем для экспрессии мРНК: Oncotype DX®, PAM-50, MammaPrint®, CIN70, Gene expression Grade Index (GGI) и другие
- **Назначение:**
 - задача прогноза рецидива заболевания
 - ❖ Oncotype DX TM 16 целевых +5 референсных генов
 - ❖ MammaPrint® 70 генов
 - классификация молекулярных фенотипов и задача прогноза
 - РАМ50 50 генов

Технологии: qRT-PCR, методы гибридизации (microarray, NanoString)

ONCOTYPE DX TM (RT- $_{O}$ PCR)


1. Paik S. et al. A multigene assay to predict recurrence of tamoxifentreated, node-negative breast cancer. N Engl J Med. 2004; 351(27): 2817-26.

- Genomic Health, USA, посредник в России Онкотест-Тева
- определение вероятности рецидива заболевания в течение 10 лет с момента его обнаружения по шкале от 0 до 100: 0 – 18 (низкий риск), 19 – 30 (умеренный риск), больше 31 (высокий риск).
- Рекомендован при инвазивном ESR+ раке молочной железы с размером опухоли менее 5 см без метастазов в лимфатические узлы, получающих терапию тамоксифеном
- При высоком риске рецидива рекомендовано применение адъювантной химиотерапии, низком – монотерапия (тамоксифен)
- \$3500
- материал исследования: свежезамороженная ткань, парафиновые блоки

09.12.2017

МАММАРКІПТ® (МИКРОМАТРИЧНЫЙ АНАЛ<u>ИЗ)</u>

 Tian S. et al. Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark Insights. 2010;5:129-38.

- Agendia, Netherlands, посредник в России Геномед
- определение вероятности рецидива заболевания или появления метастазов в течение 10 лет после удаления первичной опухоли: низкий и высокий риск.
- Рекомендован для пациенток в возрасте до 61 года, без метастазов в лимфатические узлы, при размере опухоли менее 5 см, независимо от рецепторного статуса опухоли
- При высоком риске рецидива рекомендовано применение более агрессивных форм адъювантной химиотерапии, низком – в зависимости от рецепторного статуса опухоли
- > \$2600
- материал исследования: парафиновые блоки

PAM50 / PROSIGNA (RT-QPCR, NANOSTRING TECHNOLOGIES) ●HER2-E ●LumB ●Basal-like ●LumA ●Normal-like NanoString Technologies; Seattle, WA, USA, определение молекулярного фенотипа опухоли: базальноподобный, ERBB2+, а также люминальный А и В; и риска рецидива заболевания: низкий, промежуточный или высокий Рекомендован для всех типов Кластеризация опухолей молочной железы образцов Терапия в зависимости от (РСА-анализ) молекулярного фенотипа опухоли и риска рецидива заболевания Стоимость \$5700 (Израиль), €2000 (Европа) материал исследования: парафиновые блоки 3. Prat A. et al. Clinical implications of the intrinsic Proliferation • HER2 • Luminal • Basal molecular subtypes of breast cancer. Breast. 2015;24 Тепловая карта иерархической Suppl 2:S26-35. классификации 1834 образцов РМЖ 09.12.2017

АКТУАЛЬНОСТЬ НИР (ПРОДОЛЖЕНИЕ)

- > Впервые подтипы РМЖ и прогнозы рисков рецидива, основанные на анализе экспрессии мРНК генов, признаны и включены в соглашение 2011 St Gallen International Expert Consensus, т.к. отмечена высокая корреляция выживаемости пациентов с результатами транскрипционных профилей генов
- № По результатам многоцентровых исследований (15 центров в 12 странах) отмечено, что с помощью Опсотуре DX® для более чем 700 000 больных РМЖ была выбрана терапия, основанная на индивидуальной биологии опухоли, около 30-45% пациентов были избавлены от ненужной химиотерапии и ее осложнений⁴

4. St Gallen International Expert Consensus 2017 год http://investor.genomichealth.com/releasedetail.cfm?releaseid=1017992

АКТУАЛЬНОСТЬ НИР (ПРОДОЛЖЕНИЕ)

- > Отсутствие диагностикумов на территории России
- > Ограничение: высокая стоимость исследования для россиян
 - РАМ50 \$5700 (Израиль), €2000 (Европа)
 - MammaPrint® \$2600 (CIIIA)
- > Ввиду высокой стоимости исследования по соглашению St Gallen International Expert Consensus 2011г предложена классификация суррогатным методом ИГХ⁵

5. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011;22:1736-1747.

09.12.2017

ИММУНОФЕНОТИПЫ РМЖ И МАРКЕРЫ КЛАССИФИКАЦИИ

- Суррогатный метод ИГХ как рутинная диагностика
- У Из-за низкой межлабораторной воспроизводимости результатов для Кі67 группа экспертов Санкт-Галлен 2017 г. вновь подняла вопрос об осторожности использования Кі67 6

Маркер	Иммунногистохимический подтип опухоли						
	Люминальный А	Люминальный В		HER2 +	Трижды		
		HER2+	HER2-		негативный		
ER	↑	1	↑	\downarrow	↓		
PR	↑	↑↓	↑↓	\downarrow	↓		
HER2	↓	↑	↓	↑	↓		
KI67	< 20%	> 20%	> 20%	> 20%	> 20%		
терапия	Эндокринная	Эндокринная химио- и таргетная	Эндокринная и химиотерапия	Таргетная	Химиотерапия		
прогноз	Благоприятный	Менее благо	Неблаго- приятный				

6. Curigliano G et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017 Aug 1; 28(8): 1700-1712.

ЦЕЛЬ И ЗАДАЧИ НИР

ЦЕЛЬ

Разработка отечественной молекулярно-генетической сигнатуры классификации опухолей молочной железы, основанной на транскрипционном профиле генов

ЗАДАЧИ

- > Отработка методов выделения тотальной РНК
- > Подбор и проверка высокоспецифичных олигонуклеотидов
- Проверка и мультиплексирование систем (48 генов в 24 пробирках)
- НИР на клиническом материале с разработкой модели классификации опухолей
- > Подготовка к внедрению

МАРКЕРЫ ОПУХОЛЕЙ РМЖ							
	ONCOTYPE	PAM50	TCGA	Другое			
Пролиферация, митоз, регуляция клеточного цикла	MKI67, MYBL2, CCNB1, AURKA, BIRC5	MKI67, MYBL2, CCNB1, BIRC5, CCNE1, MYC, PTTG1, SFRP1, TMEM45B	CCND1 PPP2R2A	CDKN2A, TPX2, KIF14			
Репликация и репарация ДНК		TYMS, EXO1, UBE2T		TPT1			
Факторы транскрипции		FOXA1, NAT1	GATA3, ZNF703				
Апоптоз	BCL2, BAG1	BCL2, BAG1	PTEN				
Организация цитоскелета, миграция, инвазия	MMP11, CTSL2	MMP11, ANLN	EMSY, PAK1				
Рецепторы гормонов	ESR1, PGR	ESR1, PGR,		AR			
Рецепторы ростовых факторов	ERBB2, GRB7	ERBB2, GRB7, EGFR, FGFR4					
Иммунный ответ	CD68		TRA	CD274			
Маркеры дифференцировки клеток		KRT5, MIA		SCGB2A2			
Референсный ген	GUSB			B2M, HPRT1			

МАТЕРИАЛЫ И МЕТОДЫ

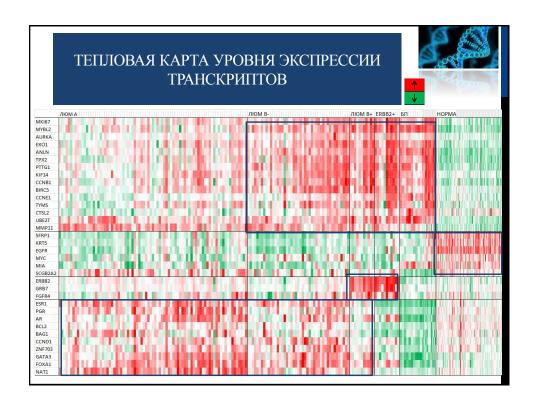
Обследовано 118 женщин РМЖ

2 выбыли: 1 - неинвазивный РМЖ,

2 – гиперэкспрессия ERBB2 внутрипротоковой локализации Иммунофенотипы:

ЛA - 55, ЛB (-) - 30, ЛB (+) - 8, TH - 16, ERBB2 (+) - 7 человек

МАТЕРИАЛЫ


 Парафиновые срезы, нативная ткань молочной железы из очагов опухоли и нормы (4 образца от одной пациенки)

МЕТОДЫ

- ➤ Мультиплексная ОТ-ПЦР в режиме реального времени для определения уровня экспрессии 45 целевых генов и 3 референсных (B2M, GUSB, HPRT1)
- > Методы многофакторного анализа

09.12.2017

РЕЗУЛЬТАТЫ НИР (ГРУППЫ ГЕНОВ И ЗАКОНОМЕРНОСТИ ИХ ЭКСПРЕССИИ ПРИ РМЖ) МКІ67 и коэкспрессированные гены ERBB2/Her2 и коэкспрессированные тирозинкиназы 40 100,0 Изменение уровня экспрессии мРНК 0 Изменение уровня экспрессии мРНК 10,0 0,1 MKI67, MYBL2, AURKA, KIF14, CCNB1, GRB7, FGFR4 PTX2, BIRC5, CCNE1, ANLN, PTTG1, TYMS EXO1, UBE2T, MMP11 Медиана и интерквартильный размах Использование «дублеров» повышает точность интегральной оценки молекулярного подтипа опухоли 09.12.2017

СРАВНЕНИЕ ПО ИГХ И ОТ-ПЦР

Молекулярный фенотип		Метод ОТ-ПЦР					ВСЕГО по	
		Люм А	Люм В ERBB2+	Люм B ERBB2-	Базально- подобный	ERBB2+	норма	ИГХ
Метод ИГХ	Люм А	47	0	6	0	0	2	55
	Люм В HER2+	0	7	1	0	0	0	8
	Люм В HER2-	6	0	24	0	0	0	30
	тн	0	0	0	16	0	0	16
	HER2/ERBB2+	0	0	0	0	7	0	7
норма		4	3	2	0	3	104	116
Совпадения по (+) результатам ⁷		86%	88%	80%	100%	100%	90%	116 женщин
Совпадения по (-) результатам ⁷		94%	99%	95%	100%	99%	98%	,

НЕ противоречат литературным данным по РАМ50 (совпадения от 60%):

Prat A. et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015; 24 Suppl
S26-35.

КЛИНИЧЕСКОЕ НАБЛЮДЕНИЕ

Пациентка П-ва 57 лет

Заключение патоморфолога: Инвазивный апокриновый рак левой молочной железы, G2. В краях резекции сектора - без опухолевого роста. В 10-ти из 14-ти подмышечных лимфоузлах - метастазы апокринового рака. pT1cN3a.

<u>ИГХ</u>: ER 7 100%, PR 4 10%, Her2 1+, Ki67 16-18%

Иммунофенотип люминального А подтипа РМЖ

<u>ОТ-ПЦР:</u> Люминальный B, ERBB2 негативный молекулярногенетический подтип РМЖ

высокая экспрессия мРНК гена ZNF703 (возможна амплификация локуса 8p11.23 — неблагоприятный маркер прогноза рецидива)

УЧАСТНИКИ ПРОЕКТА

- Родионов В.В. заведующий отделением патологии молочной железы
- Кометова В.В старший научный сотрудник патологоанатомического отлеления
- ▶ Боженко В.К. заведующий отделом молекулярной биологии и экспериментальной терапии опухолей ФГБУ «Российский научный центр рентгенрадиологии» МЗ РФ, советник директора ФГБУ «НМИЦ АГиП им. акад. В.И. Кулакова» МЗ РФ
- Трофимов Д.Ю. заведующий отделом клинической и молекулярной генетики
- Бурменская О.В. старший научный сотрудник лаборатории молекулярно-генетических методов
- Баландина И.А. сотрудник лаборатории молекулярно-генетических методов

БЛАГОДАРЮ ЗА ВНИМАНИЕ