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Digital pathology

Digital pathology includes the process

of digitizing histopathology slides using
whole-slide scanners as well as the analysis
of these digitized whole-slide images (WSI)
using computational approaches. Such

A A

for precision oncology. Pathologists and
oncologists are the primary end users
of these image analysis approaches.
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Most commonly, the result of this process
is a histopathological diagnosis that is
delivered in a written report to the treating
physicians. While the systematic training

S © e A

histopathology analysis is inherently
limited by its subjective nature and the
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widespread use of non-invasive or minimally
invasive procedures to acquire diagnostic
samples has considerably reduced the size
and quality of specimens obtained, making
the work of pathologists more challenging.
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Patient with suspected
malignancy has biopsy
and/or surgical resection

.

Pathologist fixes and
sections the tissue
specimen, and makes
multiple whole slides
using several stains

!

Pathologist digitizes
physical slide using
whole-slide scanner;
oncologist collates
adjoining database

of relevant clinical and/or
outcome information
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engineer features to be
analysed with Al

Fig. 2 | Workflow and general framework for artificial intelligence (Al) approaches in digital pathology. Typical steps involved in the use of two
popular categories of Al approaches: deep learning and hand-crafted feature engineering.




Fig. 3 | Visual representations of hand-crafted features across cancer
types. a| Spatial arrangement of clusters of tissue-infiltrating lymphocytesin
anon-small-cell lung carcinoma (NSCLC) whole-slide image. b | Features
developed using quantitative immunofluorescence of tissue-infiltrating lym-
phocyte subpopulations (including detection of CD4* and CD8* T cells and
CD20* B cells) in NSCLC samples. c | Features reflecting the distribution

and entropy of global cell cluster graphs constructed using NSCLC specimens.

I1Ba noaxoana K aHanu3y

d | Features computing the relative orientation of the glands present in
prostate cancer tissue. e | Diversity of texture of cancer cell nuclei in an oral
cavity squamous cell carcinoma. f| Nuclear shape feature computed on can-
cer cell nuclei in a human papillomavirus-positive oropharyngeal carcinoma.
g | Graph feature showing the spatial relationships of different cancer cell
nuclei in an oral cavity carcinoma. h | Hand-crafted feature capturing
cellular heterogeneity in an oestrogen receptor-positive breast cancer.
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UTO MOXHO npeackasbiBaTb?

Oncologist

Precision medicine
approaches: treatment

f tailored to an
individual patient
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Detection of cells, cellular

subtypes and histologic
primitives (such as mitotic
figures, tubules or nuclei)

Quantification of
cells or objects (such
as types of blood cells
or haemoglobin)

As a companion diagnostic
assay to evaluate patient
prognosis to determine
optimum management plan

Low risk

Grading of the tissue
according to severity of

disease (for example, Gleason
grading in prostate cancer)

Identification of unique
morphological features
associated with gene
alterations or signalling
pathways

Detection of
intratumoural

heterogeneity by
analyzing variance
across the tissue block

.

from benign or

reactive changes
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Diagnosis of malignant

inflammation and/or

Early assessment
of response to a
specific drug or
treatment

Delineation or
annotation of
which areaiis
malignant or
suspicious of
pathology on
awhole slide
image

Identification of
novel prognostic
approaches beyond
visual identification
(such as spatial
architecture or
degree of
multinucleation)

Stratification of patients on the
\ basis of their risk of progression or
recurrence to guide intensification
or de-intensification therapy

Identification of patients who

are more likely to respond to
a particular therapeutic
regimen or treatment
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Figure 1. Digital pathology suite. Whole
slide scanners and computers are arranged
ergonomically for digital pathology supervi-
sors and technicians to manage scanning
workflow.




Fig. 6: Impact of the proposed decision support system on clinical
practice.

From: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
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a, By ordering the cases, and slides within each case, based on their tumor probability, pathologists can focus their attention
on slides that are probably positive for cancer. b, Following the algorithm’s prediction would allow pathologists to potentially
ignore more than 75% of the slides while retaining 100% sensitivity for prostate cancer at the case level (n =1,784).
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https://www.nature.com/articles/s41591-019-0508-1/figures/6



Dataset Years Slides Patients Positive slides External slides ImageNet
Prostate in house 2016 12,132 836 2,402 0 19.8x
Prostate external 2015-2017 12,727 6,323 12,413 12,727 29.0x
Skin 2016-2017 9,962 5,325 1,659 3,710 21.4x
Axillary lymph nodes 2013-2018 9,894 2,703 2,521 1,224 18.2x
Total 44,732 15,187 88.4x

28,649 px/ 14.3 mm

I

63,744 px / 31.9 mm

Clinically relevant
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https://www.nature.com/articles/s41591-019-0508-1/figures/1
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nature

medicine

Brief Communication | Published: 03 June 2019

Deep learning can predict microsatellite
instability directly from histology in
gastrointestinal cancer

Jakob Nikolas Kather , Alexander T. Pearson, Niels Halama, Dirk Jager, Jeremias Krause, Sven H.
Loosen, Alexander Marx, Peter Boor, Frank Tacke, Ulf Peter Neumann, Heike |. Grabsch, Takaki
Yoshikawa, Hermann Brenner, Jenny Chang-Claude, Michael Hoffmeister, Christian Trautwein &

Tom Luedde

CTtaTbs 0 TOM YTO HEMPOHHAA CeTb CMOrna npeackasaTb OAUH U3 NapaMeTpoB
Onyxonn Xxenyaka (MuKkpocatenuTHas HeCTabunbHOCTL) - ONUPAACh TOSTbKO Ha
MUKpocKonmnyeckne n3obpaxeHmsa. ObbI4HO TOT TECT - 4OPOrocTosLas npoueaypa,
BaXHasa Ans AMarHoCcTuKK, HO Ha3Ha4vyaemas He BCEM M3-3a CTOMMOCTb U CITOXKHOCTW.
AHann3 n3obpakeHnn No3BONSET caenaTb 3TOT TECT BCEM, Y KOro bepeTrcsa buorcma
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Bbi6bopka nauueHToB

TCGA-STAD | TCGA-CRC- | TCGA-CRC- | TCGA-UCEC | DACHS KCCH
KR DX

Material FFPE snap frozen | FFPE FFPE FFPE FFPE
Staining HE HE HE HE HE HE
N patients 315 387 360 327 378 185
Median age 67 67 67 63 68 65
[years]
% UICCstagel | 13% 17% 17% 69% 20% 0%
% UICC stage 2 | 31% 37% 37% 6 % 33% 39%
% UICC stage 3 | 44% 29% 30% 19% 33% 55%
% UICC stage 4 | 10% 12% 13% 4% 14% 6%

Supplementary Table 1: Clinico-pathological variables of all patient cohorts. STAD = stomach
adenocarcinoma, CRC = colorectal cancer, KR = snap-frozen slides, DX = diagnostic slides with
FFPE processing, FFPE = formalin-fixed and paraffin-embedded, HE = hematoxylin and eosin, UICC
= Union internationale contre le cancer, UCEC = uterine corpus endometrial carcinoma, KCCH =
Yokohama gastric cancer cohort, DACHS = German colorectal cancer cohort, MSI = microsatellite
instable, NA = not applicable.
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(licensed under a CC-BY 4.0 license). b, Classification performance in virtual biopsies. We predicted MSI status in all patients in the DACHS cohort,
varying the number of blocks (tiles) from 3 to 2,054, which was the median number of blocks per whole-slide image This experiment was repeated five
times with different randomly picked blocks being used. As one block has an edge length of 256 um, a 1-cm tissue cylinder with 100% tumor tissue from
a standard 18G biopsy needle corresponds to 117 blocks and a 16G needle corresponds to 156 blocks. In clinical routine, usually only a part of each biopsy
core contains tumor, but multiple biopsy cores are collected. With increasing tissue size, performance stabilizes at AUC=0.84. This shows that a typical
biopsy would be sufficient for MSI prediction. Cl, confidence interval. ¢, Distribution of the numbers of blocks for all patients in DACHS (n=378 patients).



Pazbop ogHon 13 paboT NMpoLuecc TpeHNPOBKN HENPOCETH

Normalize and sort
Find tumor Tesselate MSI MSS Train

’ ‘\'N
“ O Net 1
vl/,“\‘\ ’A
PN
Tumor
versus ,rﬁf_j
normal ey
(
D
NV

Fig. 1| Tumor detection and MSI prediction in H&E histology. a, A convolutional neural network was trained as a tumor detector for STAD and CRC. Scale
bar, 4 mm. b,c, Tumor regions were cut into square tiles (b), which were color-normalized and sorted into MSI and MSS (c). Scale bar, 256 um. d, Another
network was trained to classify MSI versus MSS. e, This automatic pipeline was applied to held-out patient sets.
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Fig. 2 | Classification performance in an external validation set. a b, Tissue slides of patients with MSI and MSS tumors in the TCGA-CRC-DX test set
show the spatial patterns of predicted MSI score (Extended Data Fig. 4). These images are representative of n=378 patients. ¢, A network was trained
on the TCGA-CRC-DX training cohort (n=260 patients) and deployed on the DACHS cohort (n=378 patients). d, Patient-level receiver operating
characteristic curve with bootstrapped 95% Clin DACHS (n=378 patients). FPR, false-positive rate (1— specificity); TPR, true-positive rate (sensitivity).
e, Pearson correlation of predicted MSIness to transcriptomic and immunohistochemical (IHC) data across test sets. P values are listed in Supplementary
Table 4. Sample sizes per cohort are: TCGA-STAD n=91, TCGA-CRC-KR n=105, TCGA-CRC-DX n=95, DACHS n=134 patients. No adjustments for
multiple comparisons were made, and all statistical tests were two-sided.
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Extended Data Fig. 3 | Morphological correlates of intratumor heterogeneity of MSI. a, Histological image of a test set patient who was genetically
determined as MSI. b, Corresponding predicted MSI map for the image shown in a. Three regions are highlighted. Region 1is a glandular region with
necrosis and extracellular mucus; this region was predominantly predicted to be MSS. Region 2 is a solid, dedifferentiated region, which was predicted
to be MSI. Region 3 contained mostly budding tumor cells mixed with immune cells, this region was strongly predicted to be MSI. Together, these
representative examples show that different morphologies elicit different predictions and that these predictions can be traced back to patterns that are
understandable for humans. Scale bar, 2.5 mm. This figure is representative of n=378 patients in the DACHS cohort.
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Extended Data Fig. 4 | Estimated cost for MSI screening with deep learning. a, Workflow for MSI screening with deep learning versus d d
immunohistochemistry in tertiary care centers with existing digital pathology core facilities such as the University of Chicago Medical Center. Costs differ pe r a y p e r ay

by country and are usually cheaper in Europe than in the United States. Here, we list the costs that apply in the United States. b, Set-up cost (fixed cost) for

a digital pathology and deep learning infrastructure. H&E, hematoxylin and eosin; MMRd, mismatch repair deficiency; NGS, next-generation sequencing;

QC, quality control. Sources and assumptions were as follows. (1) Prices were obtained from https://htrc.uchicago.edu/fees.php?fee=2&fee=2, ~S 300 K (6) ~$ 30 K (7)
retrieved on 11 March 2019. We assume x20 magnification on a high-volume whole-slide scanner. (2) Prices were obtained from https://techcrunch.

com/2019/03/07/scaleway-releases-cloud-gpu-instances-for-el-per-hour/ and https://www.scaleway.com/, retrieved on 11 March 2019. We assume

that 1h of GPU computing on a Nvidia Tesla P100 GPU is required to process whole-slide images for one patient to prediction. (3) US Current Procedural fi Xed CO St fixed CO St
Terminology (CPT) code 88342, four-antibody panel at US$852.00 per staining. (4) Personal communication by the Pathology Department, University of

Chicago Medicine, March 2019. (5) Personal communication, Medical Oncology, National Center for Tumor Diseases, Germany. (6) Personal experience

of cost for a high-throughput slide scanner plus a limited storing capacity, based on offers by multiple digital pathology vendors. (7) Assuming a tower

server with one NVidia Tesla V100 GPU or similar GPU, based on multiple offers by providers for professional hardware, March 2019. Staff cost and + Staff + ove rh ea d Cost

infrastructure cost are not accounted for in this schematic.
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H a LIJ O I—I b IT PasneneHue Ha 4 KOMMNOHEHTbI (KNEeTOYHbIX TUNa) Ha

Tpéx cragusax metogom NMF

IT1anbl paboTbl C TMCTOSIONMYECKNMU
cpe3amMu:

®* aBTOMAaTn4yeckasi cermeHTauus
N306pa>keEHNN Ha OTOENbHbIE KJTIETKW

* Knacrtepusauma KJ1IeTok Ha OCHOBe
BHELUHEINO CXoaCcTBa

* nNpucBoeHMEe Knacrtepam
HaVMeHOBaHU

®* MOACYET COOTHOLUEHNWN Pa3/INYHbIX

KJ1aCTepoB N UCIMOJIb30OBaHUeE
MOJ1Iy4EeHHbIX COOTHOLLUEHUN B
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