HPV-Related Lesions of Gynecologic Tract: Current Challenges, Biomarkers, New Directions

Anna Yemelyanova, M.D. October 18, 2019

Cervical cancer prevention

□ 1928 - "... first observation of cancer cells in a smear of the uterine cervix was one of the most thrilling experiences of my scientific career"

- □ Pap test
- ☐ The Bethesda System for reporting Cervical Cytology

Cervical cancer prevention

- □ 1950-60s Implementation of screening program for precancer
- ☐ 70-80% reduction in incidence of cervical cancer and mortality rates in high-resource countries
- ☐ The American Cancer Society's estimates - 0.7% of all new cancers in the U.S.
- ☐ Forth most common cancer affecting women worldwide - over 80% in developing countries
- ☐ Forth most common cause of cancer death in women worldwide

Cervical cancer pathogenesis

- ☐ 1976 Human Papillomavirus plays an important role in the development of cervical cancer
- □ 2008 The Nobel Prize in Physiology or Medicine

Harald zur Hausen

HPV-related cancers

- □ 33,000 HPV-related cancers a year in the U.S.
- 90% of cervical cancers
- □ 90% of anal cancers
- □ 60% of vulvar cancers
- □ head and neck cancers oropharynx -70%
- □ majority caused by HPV 16 or 18

http://www.cdc.gov/cancer/hpv/statistics/cases.htm

http://www.cdc.gov/std/stats/STI-Estimates-Fact-Sheet-Feb-2013

HPV vaccine

Do we have to continue screening?

- ☐ Vaccine is prophylactic/not therapeutic
 - effective **pre-exposure** prophylaxis
 - no benefit in clearing existing infections
- ☐ Type-specific coverage (HPV16,18+, but not all)
 - unclear potential for cross-type immune response
- □ ~ X% of cervical cancers will continue to occur

Yes, we do...

HPV integration

- □ Productive viral infection episomal viral genomes
- Cervical carcinoma cell lines, HPV-related cancers high frequency of integrated viral genomes
- □ Integration in high-grade SIL, i.e. precancer ?
- Driving mechanism of progression from productive infection to precancer - ?

HPV integration

Frequency of integration is HPV type dependent

	Normal n (%)	n (%)	n (%)	n (%)	7 (%)	Total n	Р
HPV16	0/111 (0)	0/61(0)	5/83 (6)	27/141 (19)	33/60 (55)	456	0.0001
HPV18	0/22 (0)	0/6 (0)	0/13 (0)	0/8 (0)	33/36 (92)	85	0.000
HPV31	0/22(0)	0/16(0)	0/29 (0)	3/29 (10)	2/14 (14)	110	0.022
HPV33	0/23 (0)	0/20(0)	0/35 (0)	0/28 (0)	7/19 (37)	125	0.003
HPV45	0/8 (0)	0/5 (0)	0/12(0)	6/10 (60)	20/24 (83)	59	0.000
	0/186 (0)	0/108(0)	5/172 (3)	36/216 (17)	95/153 (62)	835	0.000

Vinokurova et al, Cancer Res 2008

HPV integration

- Non-random HPV integration
 - integration hot spots/fragile sites with microhomology sequences
 - disruption of novel tumor suppressor genes
 - integration in the vicinity of mRNAs

Hu et al, Nature Genetics 47, 158–163 (2015) Schmitz t al, PLoS One. 2012;7(6)

LAST project Biomarkers in HPV-associated Lower Anogenital Squamous Lesions

- p16 IHC is recommended when the H&E morphologic differential diagnosis is between precancer (-IN 2 or -IN 3) and a mimic of precancer
- □ If the pathologist is entertaining an H&E morphologic interpretation of -IN 2 (under the old terminology, which is a biologically equivocal lesion falling between the morphologic changes of HPV infection [low-grade lesion] and precancer), p16 IHC is recommended to help clarify the situation. Strong and diffuse block-positive p16 results support a categorization of precancer. Negative or non-block-positive staining strongly favors an interpretation of low-grade disease or a non-HPV-associated pathology.
- p16 is recommended for use as an adjudication tool for cases in which there is a professional disagreement in histologic specimen interpretation, with the caveat that the differential diagnosis includes a precancerous lesion (-IN 2 or -IN 3).
- WG4 recommends against the use of p16 IHC as a routine adjunct to histologic assessment of biopsy specimens with morphologic interpretations of negative, -IN 1, and -IN 3.

P16 - marker of HSIL

HSIL with endocervical gland involvement

Immature squamous metaplasia

LAST project Biomarkers in HPV-associated Lower Anogenital Squamous Lesions

- p16 IHC is recommended when the H&E morphologic differential diagnosis is between precancer (-IN 2 or -IN 3) and a mimic of precancer
- □ If the pathologist is entertaining an H&E morphologic interpretation of -IN 2 (under the old terminology, which is a biologically equivocal lesion falling between the morphologic changes of HPV infection [low-grade lesion] and precancer), p16 IHC is recommended to help clarify the situation. Strong and diffuse block-positive p16 results support a categorization of precancer. Negative or non-block-positive staining strongly favors an interpretation of low-grade disease or a non-HPV-associated pathology
- p16 is recommended for use as an adjudication tool for cases in which there is a professional disagreement in histologic specimen interpretation, with the caveat that the differential diagnosis includes a precancerous lesion (-IN 2 or -IN 3)
- 4. WG4 recommends against the use of p16 IHC as a routine adjunct to histologic assessment of biopsy specimens with morphologic interpretations of negative, -IN 1, and -IN 3

P16 in LSIL

- □ p16 is positive in 30-70% of LSILs
- □ Biologic potential of p16 positive LSIL is unknown
- □ Over 80% of LSILs contain HR HPV
- □ HPV 16 most common type ~ 25%

P16 in LSIL

- □ Study goal: to evaluate p16 expression in LSILs in correlation with HPV types
- □ 231 cervical specimens (biopsies, excisions) diagnosed as LSIL (CIN 1)
- □ p16 IHC CINtec Histology kit (mtm laboratories)
- □ HPV typing INNO-LiPA HPV Genotyping Extra (INNOGENETICS)
- □ HPV typing in situ hybridization RNA scope (ACD)

Yemelyanova et al, Mod Pathol 2013;26:299A

P16 in LSIL

- □ Positive p16 expression is observed in 59%
- □ Nearly all HPV16-related LSILs are p16 positive
- □ LSILs may display problematic patterns of p16 expression that are not readily interpretable as positive or negative
- Infections with multiple HPV types occur and can give rise to independent lesions with different biologic potential
- □ Detailed HPV-typing of the lesions is important while studying biologic potential of p16 positive LSILs

Yemelyanova, Mod Pathol 2013;26:299A

HPV detection

- Detection of HPV nucleic acid in solutionsDNAmRNA
- In situ hybridization methods for FFPE
 DNA-based
 RNA-based (transcriptionally active virus)

HPV and cervicovaginal microbiome

- ☐ Five community-state types (CST)
 - I,II,III,V dominated Lactobacillus spp.
 - IV diverse anaerobic bacteria and low Lactobacillus spp.
- ☐ Maintenance of low pH by Lactobacillus spp is protective of STIs
- ☐ Lactobacillus-depleted microbiome Bacterial vaginosis
 - increased transmission rates of STIs
- □ CST IV (Lactobacillus-depleted/Atopobium-enriched)
 - slowest regression of HPV/ persistentce
- □ CST II (Lactobacillus gasseri –dominated) rapid clearance of HPV
- □ CST IV more commonly seen in women with HPV-related SIL

Brotman et al, JID 2014, 210: 1723 Mitra et al, nature.com/scientific reports

HPV and immunotherapy

- ☐ Adoptive T-cell therapy Tumor-infiltrating T-cells (HPV E6/E7)
 - reported complete responses in metastatic cervical cancer
- Vaccine-based therapies
 - HPV E6 and E7 targets

(vector-based, peptide-based, protein-based, NA-based vaccines)

- ☐ Immune-modulating agents Immune checkpoints inhibitors
 - CTLA-4
 - PD-1/PD-L1 Phase I/II trials

Stevanovic et al, JCO. May 2015 Eskander et al, Clin Therapeutics. 2015;37(1)

Studying cervical cancer precursors Lessons learned

- Complex and dynamic system
 - Infections with multiple HPV types
 - Changes in immunologic milieu
 - Changes in hormonal environment
 - Host microbiome
- Constant evolution of infections/lesions
- Diagnostic procedures/treatment alter natural course

Thank you!

Thank you!